

A PRESSURE-STABILIZED LAGRANGE-GALERKIN FINITE ELEMENT SCHEME FOR AN OSEEN-TYPE DIFFUSIVE PETERLIN MODEL

Masahisa Tabata¹, Maria Lukacova², Hana Mizerova² and Hirofumi Notsu³

¹ Department of Mathematics,
 Waseda University, Tokyo 169-8555, Japan
 tabata@waseda.jp

² Institut fur Mathematik,
 Universitat Mainz, Mainz 55099, Germany
 lukacova@mathematik.uni-mainz.de, mizerova@uni-mainz.de

³ Waseda Institute for Advanced Study,
 Waseda University, Tokyo 169-8555, Japan
 h.notsu@aoni.waseda.jp

Key Words: *Viscoelastic fluid, Lagrange-Galerkin FEM, Pressure stabilization.*

Let Ω be a bounded domain in \mathfrak{R}^d ($d = 2$) and T be a positive number. We consider an Oseen-type diffusive Peterlin system which describes a motion of an incompressible viscoelastic fluid,

$$\begin{aligned}
 \frac{D_w u}{Dt} - \nu \Delta u + \nabla p - \nabla (\text{tr} C C) &= f && \text{in } \Omega \times (0, T), \\
 \nabla \cdot u &= 0 && \text{in } \Omega \times (0, T), \\
 \frac{D_w C}{Dt} - \varepsilon \Delta C - \left\{ (\nabla u) C + C (\nabla u)^T \right\} + (\text{tr} C)^2 C - (\text{tr} C) I &= F && \text{in } \Omega \times (0, T), \\
 u &= 0, \quad C = 0 && \text{on } \partial \Omega \times (0, T), \\
 u &= u^0, \quad C = C^0 && \text{in } \Omega \text{ at } t = 0,
 \end{aligned}$$

where $u : \Omega \times (0, T) \rightarrow \mathfrak{R}^d$ is the velocity, $p : \Omega \times (0, T) \rightarrow \mathfrak{R}$ is the pressure, $C : \Omega \times (0, T) \rightarrow \mathfrak{R}^{d \times d}$ is the conformation tensor, $\frac{D_w}{Dt} \equiv \frac{\partial}{\partial t} + w \cdot \nabla$, $w : \Omega \times (0, T) \rightarrow \mathfrak{R}^d$ is a given velocity, ν and ε are positive constants, $f : \Omega \times (0, T) \rightarrow \mathfrak{R}^d$, $F : \Omega \times (0, T) \rightarrow \mathfrak{R}^{d \times d}$, $u^0 : \Omega \rightarrow \mathfrak{R}^d$ and $C^0 : \Omega \rightarrow \mathfrak{R}^{d \times d}$ are given functions, $\text{tr} C$ means the trace of C . For this problem we present a Lagrange-Galerkin finite element scheme with Brezzi-Pitkaranta type pressure stabilization, where all unknown functions (u, p, C) are approximated by P1 elements, and show that

the finite element solution (u_h, p_h, C_h) converges to the exact solution (u, p, C) in order $\Delta t + h$, where Δt is the time increment and h is the representative element size.

REFERENCES

- [1] Brezzi F, Pitkaranta J (1984) On the stabilizations of finite element approximations of the Stokes equations. In Hackbusch W, editor, Efficient Solutions of Elliptic Systems, Friedr. Vieweg & Sohn, Braunschweig/Wiesbaden, 11-19.
- [2] Notsu H, Tabata M (2013) Error estimates of a pressure-stabilized characteristics finite element scheme for the Oseen equations, WIAS Preprint, WIAS-DP-2013-002, Waseda Univ.